Google

Sparse Matrix representation for polynomials

Written on:August 26, 2012
Comments are closed

Sparse Matrix representation for polynomials

Program to represent two polynomials using Sparse Matrix representation using arrays, compute sum of two polynomials and represent the result using sparse matrix:

/* Sparse Matrix Representation for Polynomials */

#include <stdio.h>
#include <stdlib.h>

#define MAX 15

int main(){
int poly1[MAX][MAX]={0},poly2[MAX][MAX]={0},poly3[MAX][MAX]={0};
int i,j,k,m,n,nrows,nrows1,nrows2,nrows3,ncols,ct=0,ct1=0,ct2=0;
int spmat1[MAX][MAX]={0},spmat2[MAX][MAX]={0},spmat3[MAX][MAX]={0};
int deg,deg1,deg2,deg3;
printf(“nEnter degree of first polynomial?”);
scanf(“%d”,&deg1);
printf(“nEnter degree of second polynomial?”);
scanf(“%d”,&deg2);
deg3=(deg1>deg2)?deg1:deg2;

printf(“nFor first polynomial:”);
for(i=0;i<=deg1;i++){
printf(“nEnter coefficient for exponent %d> “,i);
scanf(“%d”,&poly1[0][i]);
if(poly1[0][i] != 0)
ct1++;
}
nrows1 = ct1 + 1;
ncols = 3;
spmat1[0][0] = 1;
spmat1[0][1] = deg1 + 1;
spmat1[0][2] = ct1;
m=1;
n=0;
for(i=0;i<1;i++){
for(j=0;j<deg1+1;j++){
if(poly1[i][j] != 0){
spmat1[m][n++]=i;
spmat1[m][n++]=j;
spmat1[m][n]=poly1[i][j];
m++;
n=0;
}
}
}
for(i=0;i<nrows1;i++){
for(j=0;j<ncols;j++)
printf(“%dt”,spmat1[i][j]);
printf(“n”);
}
ct2=0;
printf(“nFor second polynomial:”);
for(i=0;i<=deg2;i++){
printf(“nEnter coefficient for exponent %d> “,i);
scanf(“%d”,&poly2[0][i]);
if(poly2[0][i] != 0)
ct2++;
}
nrows2 = ct2 + 1;
ncols = 3;
spmat2[0][0] = 1;
spmat2[0][1] = deg2+1;
spmat2[0][2] = ct2;
m=1;
n=0;
for(i=0;i<1;i++){
for(j=0;j<deg2+1;j++){
if(poly2[i][j] != 0){
spmat2[m][n++]=i;
spmat2[m][n++]=j;
spmat2[m][n]=poly2[i][j];
m++;
n=0;
}
}
}
for(i=0;i<nrows2;i++){
for(j=0;j<ncols;j++)
printf(“%dt”,spmat2[i][j]);
printf(“n”);
}
printf(“nGenerating sum of polynomials…!”);
printf(“nPress any key to continue…”);

deg = deg1<deg2?deg1:deg2;
for(i=0;i<=deg;i++){
poly3[0][i]=poly1[0][i]+poly2[0][i];
ct++;
}
for(;i<=deg1;i++){
poly3[0][i]=poly1[0][i];
ct++;
}
for(;i<=deg2;i++){
poly3[0][i]=poly2[0][i];
ct++;
}
nrows = ct+1;
ncols = 3;
spmat3[0][0]=1;
spmat3[0][1]=ct;
spmat3[0][2]=ct;
m=1;
n=0;
for(i=0;i<1;i++){
for(j=0;j<deg+1;j++){
if(poly3[i][j] != 0){
spmat3[m][n++]=i;
spmat3[m][n++]=j;
spmat3[m][n]=poly3[i][j];
m++;
n=0;
}
}
}
printf(“nnAddition Result:nn”);
for(i=0;i<nrows;i++){
for(j=0;j<3;j++)
printf(“%dt”,spmat3[i][j]);
printf(“n”);
}
for(i=0;i<=deg1;i++)
printf(“(%d*x^%d)->”,poly1[0][i],i);

printf(“bb n”);

for(i=0;i<=deg2;i++)
printf(“(%d*x^%d)->”,poly2[0][i],i);

printf(“bb n”);

for(i=0;i<=deg3;i++)
printf(“(%d*x^%d)->”,poly3[0][i],i);

printf(“bb n”);

}

Sorry, the comment form is closed at this time.